Home
  • About
  • Posts
  • Projects
  • Research
  • Notes
  • Topics
  • Videos
  • Search
Home » Notes » Paper Summaries

Deep Learning Summaries

Deep Learning

A Contrastive Learning Approach for Training Variational Autoencoder Priors

Summary of Dai et al.'s NeurIPS 2021 paper introducing Noise Contrastive Priors (NCPs), a novel method using noise …

paper-summary generative-models variational-autoencoders +8 more
Updated Aug 2025 Aug 2025
Deep Learning

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data

Summary of Weiler et al.'s 3D Steerable CNNs paper from NeurIPS 2018, which introduces SE(3)-equivariant convolutional …

paper-summary 3d-cnns equivariant-networks +8 more
Updated Jan 2025 Jan 2025
© 2025 Hunter Heidenreich · Powered by Hugo & PaperMod